Myosin VA Movements in Normal and Dilute-Lethal Axons Provide Support for a Dual Filament Motor Complex

نویسنده

  • P.C. Bridgman
چکیده

To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va-associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein-myosin Va tail construct. Myosin Va-associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va-associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density

The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the...

متن کامل

Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses.

We investigated the axonal transport of neurofilaments in cultured neurons from two different strains of dilute lethal mice, which lack myosin Va. To analyze the motile behavior, we tracked the movement of green fluorescent protein (GFP)-tagged neurofilaments through naturally occurring gaps in the axonal neurofilament array of cultured superior cervical ganglion neurons from DLS/LeJ dilute let...

متن کامل

Myosin Va is required for normal photoreceptor synaptic activity.

Myosin Va is an actin-based motor molecule, one of a large family of unconventional myosins. In humans, mutations in MYO5A cause Griscelli syndrome type 1 and Elejalde syndrome, diseases characterized by pigmentation defects and the prepubescent onset of severe neurological deficits that ultimately lead to a shortened lifespan. Mutations in the Myo5a gene in mouse cause the dilute series of mou...

متن کامل

Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility.

We established a light microscopy-based assay that reconstitutes the binding of phagosomes purified from mouse macrophages to preassembled F-actin in vitro. Both endogenous myosin Va from mouse macrophages and exogenous myosin Va from chicken brain stimulated the phagosome-F-actin interaction. Myosin Va association with phagosomes correlated with their ability to bind F-actin in an ATP-regulate...

متن کامل

Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice.

Recent studies have identified myosin Va as an organelle motor that may have important functions in neurons. Abundantly expressed at the hippocampal postsynaptic density, it interacts with protein complexes involved in synaptic plasticity. It is also located in presynaptic terminals and may function to recruit vesicles in the reserve pool to the active zone. Dilute-lethal mice are spontaneous m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 146  شماره 

صفحات  -

تاریخ انتشار 1999